Differential expression analysis of RNA–Seq data using DESeq2

نویسنده

  • Bernd Klaus
چکیده

3 RNA–Seq data preprocessing 2 3.1 Creation of a sample metadata table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Quality control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Alignment of reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Sorting and indexing of the alignment files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.5 Counting features with HTSeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.6 Creating a count table for DESeq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.7 Add additional annotation information using biomaRt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BioC2014: RNA-Seq workflow for differential gene expression

This lab will walk you through an end-to-end RNA-Seq differential expression workflow. We will start from the FASTQ files, align to the reference genome, prepare gene expression values as a count table by counting the sequenced fragments, perform differential gene expression analysis, and visually explore the results. This lab covers the basic introduction. For a more in-depth explanation of th...

متن کامل

CSAMA 2014: RNA-Seq differential expression workflow

This lab will walk you through an end-to-end RNA-Seq differential expression workflow. We will start from the FASTQ files, align to the reference genome, prepare gene expression values as a count table by counting the sequenced fragments, perform differential gene expression analysis, and visually explore the results. This lab covers the basic introduction. For a more in-depth explanation of th...

متن کامل

RUVSeq: Remove Unwanted Variation from RNA-Seq Data

2 A typical differential expression analysis workflow 2 2.1 Filtering and exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 RUVg: Estimating the factors of unwanted variation using control genes . . . . . . . . . . . . . . . . 3 2.3 Differential expression analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6...

متن کامل

Power analysis and sample size estimation for RNA-Seq differential expression.

It is crucial for researchers to optimize RNA-seq experimental designs for differential expression detection. Currently, the field lacks general methods to estimate power and sample size for RNA-Seq in complex experimental designs, under the assumption of the negative binomial distribution. We simulate RNA-Seq count data based on parameters estimated from six widely different public data sets (...

متن کامل

In Papyro Comparison of TMM (edgeR), RLE (DESeq2), and MRN Normalization Methods for a Simple Two-Conditions-Without-Replicates RNA-Seq Experimental Design

In the past 5 years, RNA-Seq has become a powerful tool in transcriptome analysis even though computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. It is, however, now commonly accepted that the choice of a normalization procedure is an important step in such a process, for example in differential gene expression analysis. The present art...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014